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Abstract 

SwissLedger is a blockchain-based distributed ledger system designed for institutional 
applications. It is compatible with the Ethereum Virtual Machine (EVM) and uses Proof of 
Authority (PoA) consensus. SwissLedger combines efficiency, security, and regulatory 
compliance. This document describes the technical features of SwissLedger, its consensus 
model and potential use cases. 

 

Introduction 

Blockchain technologies have revolutionised the way digital data and transactions are 
managed. However, institutional adoption of these technologies requires platforms that 
balance security, scalability, and regulatory compliance. SwissLedger addresses these 
challenges by providing a DLT solution designed to meet the needs of government and 
corporate entities. 

 

System Description 

Ethereum Virtual Machine (EVM) 

SwissLedger is based on the Ethereum Virtual Machine (EVM), a Turing-complete execution 
environment designed to execute smart contracts in a secure and deterministic manner. The 
EVM operates as an isolated virtual machine, executing bytecode code with mathematical 
precision and without external dependencies. Each smart contract has a dedicated 
permanent storage space, ensuring data persistence on the blockchain. Thanks to the 
sandboxing model, smart contracts are completely isolated, preventing interference or 
compromise by other contracts. 

The EVM environment supports the compilation of languages such as Solidity, ensuring a 
flexible development process that is integrated with Ethereum's vast ecosystem of tools. This 
compatibility simplifies the writing and debugging of smart contracts. In addition, EVM 
enables the generation of logs through indexed events, allowing decentralised applications 
to monitor specific activities without burdening blockchain storage. 
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Proof of Authority (PoA) Consensus 

SwissLedger uses a PoA model, in which a limited number of validators, authorised by 
trusted entities such as the City of Lugano, guarantee the integrity of the network. This 
model reduces energy consumption and improves efficiency compared to traditional Proof of 
Work (PoW) systems. 

Security and Resilience 

SwissLedger's PoA model incorporates a number of advanced mechanisms to ensure 
security and resilience. To prevent malicious behaviour, it limits the number of consecutive 
blocks a validator can sign, reducing the risk of power concentration and attacks by 
compromised validators. The system also includes a continuous monitoring process of 
validators based on an internal consensus mechanism, which allows validators to be added 
or removed based on predetermined parameters, such as reliability and behaviour during 
consensus. 

A key element of the model is the adoption of penalties for non-compliant behaviour. These 
penalties may include the temporary or permanent removal of non-compliant validators, 
ensuring that only nodes that act correctly can continue to participate in the system. 

From a technical point of view, the process of authorising a block is based on an algorithm 
that verifies the authenticity of the validator's signature before accepting a block into the 
chain. Each validator has a unique cryptographic key used to sign blocks, and the system 
verifies that the signature corresponds to an authorised validator. This mechanism prevents 
unauthorised or compromised nodes from entering invalid data into the blockchain. The 
generation time of each block is set to 5 seconds, ensuring rapid transaction propagation 
and high operational efficiency. 

In addition, the model implements a validator system in which active validators can vote to 
add new validators or remove existing ones. Each proposed change must obtain a qualified 
majority to be approved, thus ensuring that decisions on the composition of the validator set 
are the result of a collective consensus. This process enhances network security and 
ensures that the system remains dynamic and adaptable to operational needs. 

Finally, SwissLedger's architecture ensures redundancy and synchronisation between nodes 
through the use of regular checkpoints. These checkpoints contain key information, such as 
the current list of validators and the current state of the network, and are used to ensure data 
consistency between nodes. In addition, the protocol provides predetermined block times 
and an algorithm that dynamically adjusts the consensus to maintain high efficiency even in 
the event of changes in the availability of validators. 
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Token Standards 

SwissLedger supports the main Ethereum token standards: 

●​ ERC-20: For fungible tokens such as cryptocurrencies and utility tokens. 
●​ ERC-721: For non-fungible tokens (NFT), which can be used in artistic and digital 

applications. 
●​ ERC-2980: Specifically designed to represent financial assets compliant with Swiss 

regulations. 

These standards are adapted to ensure regulatory compliance, efficiency, and security. 

 

Security Mechanisms 

Transaction Limiting 

Rate limiting in the mempool is an advanced measure to ensure the security and efficiency 
of blockchains, especially those without transaction fees. Currently, the limit of pending 
transactions per single address is set at 8, based on an initial configuration defined by 
SwissLedger. However, as the system is completely decentralised, this setting is neither rigid 
nor definitive. 

Each node in the network has the possibility to change this limit independently, deciding how 
many transactions per address it can accept. In a decentralised environment, such changes 
are possible at any time, since each node operates independently. However, network 
consistency depends on majority consensus: if a significant number of nodes adopt a 
different configuration, it may prevail as the new operating standard. 

This flexible approach allows the network to adapt dynamically to user needs, while 
maintaining a balance between security and performance. In summary, rate limiting, 
although initially configured with a predefined limit, can be modified and adapted over time 
due to the decentralized nature of the network, ensuring optimal shared resource 
management. 

Node Management 

Access to the network is restricted to approved nodes, which must meet strict security 
criteria and adhere to the rules defined by smart contracts. This approval process ensures 
that only authorised, verified and secure nodes can participate in the network. Each node 
must provide specific credentials and meet security criteria before being considered eligible. 
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Account Management 

Accounts are associated with specific permissions determined by smart contracts. These 
permissions are defined according to a hierarchical system that allows specific access and 
privileges to be established for each account. Access levels include: 

●​ ReadOnly (0): Read-only access, which allows data to be viewed without making 
changes. 

●​ Transact (1): Permission to perform transactions, allowing interaction with contracts 
and network data. 

●​ ContractDeploy (2): Permission to deploy smart contracts, enabling the creation of 
new functionality in the network. 

●​ FullAccess (3): Full access, which includes the ability to manage permissions, 
approve nodes and modify network configurations. 

Each account must be approved before being activated, and changes to permissions must 
follow strict procedures to avoid errors or abuse. 

Smart Contract Based Implementation 

All node and account management operations are based on smart contracts. This approach 
enables automated and transparent configuration, reducing the possibility of human error. 
Nodes dynamically configure themselves according to the network administration smart 
contracts, providing distributed and secure control. These smart contracts provide an 
auditable and immutable system to monitor and manage activities, ensuring that network 
rules are strictly followed. The use of smart contracts enhances security and ensures that 
any changes in the network are traceable and comply with established policies. 

Anchoring System to Bitcoin 

The anchoring system of an EVM blockchain to Bitcoin is crucial to ensure the immutable 
notarisation of the EVM blockchain state, leveraging the robustness and security of the 
Bitcoin network. This process allows a representative hash of the EVM blockchain state to 
be recorded within a Bitcoin transaction, providing an independently verifiable cryptographic 
proof associated with a precise instant in time. 

The need for such a system stems from the need to increase trust in the information 
recorded on the EVM blockchain by incorporating a higher level of security via Bitcoin, the 
most established and attack-resistant blockchain. Through the use of OpenTimestamps and 
a smart contract on EVM, a fully decentralised process for storing and verifying notarised 
information is achieved, eliminating dependence on centralised infrastructure. This system 
allows anyone to transparently verify that the data on EVM blockchain was recorded at a 
specific point in time, ensuring integrity and immutability. 
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Technical Description of Timestamping with OpenTimestamps 

The OpenTimestamps protocol allows digital documents to be anchored to the Bitcoin 
blockchain to ensure immutability and time verification. OpenTimestamps servers collect 
hashes of documents generated by users (OpenTimestamps clients). Periodically, these 
hashes are organised in a Merkle Tree, generating a Root Hash that is inserted into a Bitcoin 
transaction (OP_RETURN field). This process performs the timestamping operation. 

To verify that a document has been recorded correctly, the process proceeds by calculating 
the hash of the document, combining it with intermediate hashes until the Root Hash is 
reconstructed. If the latter matches the one recorded in the blockchain, the operation is 
confirmed. 

 

Anchoring process 

1.​ Time division of the SwissLedger blockchain 

The SwissLedger blockchain is divided into regular intervals [t; t+T], where T 
represents the duration of the interval to be anchored to Bitcoin. 

 
2.​ Calculation of the blockhash hash 

For each interval, the blockhashes of the blocks between t and t+T are concatenated 
in order of block number and the overall hash is calculated: 

Hash(Block(t) + Block(t+1) + ... + Block(t+N)). 

 

3.​ Creation of information files 

The calculated hash is saved in a .txt file containing alphanumeric data. Then, with 
the OpenTimestamps client, an .ots file is generated that includes all the 
information required for timestamping and verification. 
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4.​ Uploading and managing files 

​
The .txt and .ots files are uploaded to an OpenTimestamps server, which takes 
care of updating the .ots file with partial hashes to reconstruct the Root Hash. This is 
then inserted into a Bitcoin transaction, ensuring time anchoring. 
 
 

5.​ Decentralised storage 
​
The hashes and related files are recorded on a smart contract deployed on the 
SwissLedger blockchain. This smart contract keeps track of the correspondence 
between block number and concatenated hash, allowing users to access the files via 
a URL provided by the contract itself. 
 
 

6.​ Independent verification 

Users can verify the integrity of the .txt file using a blockchain explorer to retrieve 
the necessary blockhash. In addition, it is possible to verify the .ots file through 
third-party services, as provided by the OpenTimestamps protocol. All the information 
to perform these verifications is publicly available and guarantees a transparent 
process. 

 

Advantages of the system 

●​ Immutability and transparency 

The use of SwissLedger blockchain and Bitcoin ensures that data cannot be changed 
or deleted. 

 
●​ Decentralised verification 

​
Management via smart contracts eliminates the need for centralized platforms, 
allowing direct and secure access to data by users. 
 
 

●​ Flexible storage 

Files can be stored on distributed repositories (such as IPFS) or centralised, 
depending on the needs of the system. 
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Use Cases (non-exhaustive list) 

Digital Identity 

SwissLedger enables the creation of secure, verifiable digital identities that comply with data 
protection regulations. 

Supply Chain Traceability 

The platform provides tools to track products along the entire supply chain, ensuring 
transparency and authentication of assets. 

Tokenisation of Financial Assets 

Thanks to Ethereum-compatible standards, SwissLedger facilitates the digital representation 
of stocks, bonds and derivatives. 

Gaming and Entertainment Applications 

NFT support enables the creation of unique digital assets, ideal for gaming platforms and 
digital collectibles. 

 

 

Conclusion 

SwissLedger is an institutional blockchain platform designed to address security, efficiency 
and regulatory compliance challenges. Its PoA system, combined with advanced 
functionality and a focus on innovation, is an ideal solution for government agencies and 
corporations wishing to adopt blockchain technology in a secure and scalable manner. 

ledger.swiss - v.1.0​ 7 


	Whitepaper  
	SwissLedger: An Institutional Decentralized Ledger 
	Abstract 
	Introduction 
	System Description 
	Ethereum Virtual Machine (EVM) 
	SwissLedger is based on the Ethereum Virtual Machine (EVM), a Turing-complete execution environment designed to execute smart contracts in a secure and deterministic manner. The EVM operates as an isolated virtual machine, executing bytecode code with mathematical precision and without external dependencies. Each smart contract has a dedicated permanent storage space, ensuring data persistence on the blockchain. Thanks to the sandboxing model, smart contracts are completely isolated, preventing interference or compromise by other contracts. 
	The EVM environment supports the compilation of languages such as Solidity, ensuring a flexible development process that is integrated with Ethereum's vast ecosystem of tools. This compatibility simplifies the writing and debugging of smart contracts. In addition, EVM enables the generation of logs through indexed events, allowing decentralised applications to monitor specific activities without burdening blockchain storage. 
	 
	Proof of Authority (PoA) Consensus 

	 
	Token Standards 
	Security Mechanisms 
	Transaction Limiting 
	Node Management 
	 
	Account Management 
	Smart Contract Based Implementation 
	Anchoring System to Bitcoin 

	Anchoring process 
	Advantages of the system 
	Use Cases (non-exhaustive list) 
	Digital Identity 
	Supply Chain Traceability 
	Tokenisation of Financial Assets 
	Gaming and Entertainment Applications 

	 
	Conclusion 

